Alkene Metalates as Hydrogenation Catalysts

نویسندگان

  • Philipp Büschelberger
  • Dominik Gärtner
  • Efrain Reyes-Rodriguez
  • Friedrich Kreyenschmidt
  • Konrad Koszinowski
  • Axel Jacobi von Wangelin
  • Robert Wolf
چکیده

First-row transition-metal complexes hold great potential as catalysts for hydrogenations and related reductive reactions. Homo- and heteroleptic arene/alkene metalates(1-) (M=Co, Fe) are a structurally distinct catalyst class with good activities in hydrogenations of alkenes and alkynes. The first syntheses of the heteroleptic cobaltates [K([18]crown-6)][Co(η4 -cod)(η2 -styrene)2 ] (5) and [K([18]crown-6)][Co(η4 -dct)(η4 -cod)] (6), and the homoleptic complex [K(thf)2 ][Co(η4 -dct)2 ] (7; dct=dibenzo[a,e]cyclooctatetraene, cod=1,5-cyclooctadiene), are reported. For comparison, two cyclopentadienylferrates(1-) were synthesized according to literature procedures. The isolated and fully characterized monoanionic complexes were competent precatalysts in alkene hydrogenations under mild conditions (2 bar H2 , r.t., THF). Mechanistic studies by NMR spectroscopy, ESI mass spectrometry, and poisoning experiments documented the operation of a homogeneous mechanism, which was initiated by facile redox-neutral π-ligand exchange with the substrates followed by H2 activation. The substrate scope of the investigated precatalysts was also extended to polar substrates (ketones and imines).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkene Hydrogenations by Soluble Iron Nanocluster Catalysts

The replacement of noble metal technologies and the realization of new reactivities with earth-abundant metals is at the heart of sustainable synthesis. Alkene hydrogenations have so far been most effectively performed by noble metal catalysts. This study reports an iron-catalyzed hydrogenation protocol for tri- and tetra-substituted alkenes of unprecedented activity and scope under mild condit...

متن کامل

Rapid ether and alcohol C-O bond hydrogenolysis catalyzed by tandem high-valent metal triflate + supported Pd catalysts.

The thermodynamically leveraged conversion of ethers and alcohols to saturated hydrocarbons is achieved efficiently with low loadings of homogeneous M(OTf)n + heterogeneous Pd tandem catalysts (M = transition metal; OTf = triflate; n = 4). For example, Hf(OTf)4 mediates rapid endothermic ether ⇌ alcohol and alcohol ⇌ alkene equilibria, while Pd/C catalyzes the subsequent, exothermic alkene hydr...

متن کامل

Tandem ammonia borane dehydrogenation/alkene hydrogenation mediated by [Pd(NHC)(PR3)] (NHC = N-heterocyclic carbene) catalysts.

[Pd(NHC)(PR(3))] complexes were shown to be active catalysts in the dehydrogenation of ammonia borane and the subsequent hydrogenation of unsaturated compounds at very low catalyst loadings (0.05 mol% for some substrates).

متن کامل

A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported...

متن کامل

Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles.

Unsupported thiolate-capped palladium nanoparticle catalysts are found to be highly substrate-selective for alkene hydrogenation and isomerization. Steric and poisoning effects from thiolate ligands on the nanoparticle surface control reactivity and selectivity by influencing alkene adsorption and directing either di-σ or mono-σ bond formation. The presence of overlapping p orbitals and α proto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017